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Dynamic channel tracking

• A narrowband massive MIMO system with HBF structure

(a) HBF structure1 (b) ULA structure2

• The observed precoded channel ht ∈ CNRF at time slot t

ht = WtHt + nt ,nt ∼ CN (0, σ2
mINRF), (1)

1Song Noh, Michael D Zoltowski, and David J Love. “Training sequence design for feedback assisted hybrid beamforming
in massive MIMO systems”. In: IEEE Transactions on Communications 64.1 (2015), pp. 187–200.

2Zai Yang et al. “Sparse methods for direction-of-arrival estimation”. In: Academic Press Library in Signal Processing,
Volume 7. Elsevier, 2018, pp. 509–581.
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Dynamic channel tracking

• A half-wave spaced ULA at the receiver

Ht =

NL∑
i=1

αia(θt
i ), (2)

where αi denoted the complex gain of the ith path and
a(θt

i ) =
1√
Nr
[1 ejπ sin θt

i ... ejπ(Nr−1) sin θt
i ]T

• Ht can be transformed into the sparse angle domain

Ht = DH̃t , (3)

where D is the transform dictionary determined by the
geometrical structure of the antenna array.
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Temporal structured sparsity
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Figure: (a) Antenna-Time domain. (b) Angle-Time domain.

• we can rewrite (1) as

ht = At H̃t + nt , (4)
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Dynamic Compressive sensing (DCS)

• The main goal of DCS problem is to recursively reconstruct {xt}
from {yt}(i.e., M ≪ N)

yt = Atxt + nt ,nt ∼ CN (0,Rt), (5)

• Focusing on the dynamic filtering model

xt = ft(xt−1) + νt , (6)

where νt is the filtering noise (innovation).
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Existing DCS algorithms

• Recursive algorithms
1 Exploiting the slow support changing feature

• LS-CS3, Modified-CS4, Weighted-ℓ1
5.

2 Exploiting the slow support and value changing feature.
• KF-CS6, RegModCS7

• Question: Do these existing recursive DCS algorithms have some
intrinsic correlations or not?

3Namrata Vaswani. “LS-CS-residual (LS-CS): Compressive sensing on least squares residual”. In: IEEE Transactions on
Signal Processing 58.8 (2010), pp. 4108–4120.

4Namrata Vaswani and Wei Lu. “Modified-CS: Modifying compressive sensing for problems with partially known
support”. In: IEEE Transactions on Signal Processing 58.9 (2010), pp. 4595–4607.

5Adam S Charles and Christopher J Rozell. “Dynamic filtering of sparse signals using reweighted ℓ1”. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 6451–6455.

6Namrata Vaswani. “KF-CS: Compressive sensing on Kalman filtered residual”. In: arXiv preprint arXiv:0912.1628 (2009).
7Wei Lu and Namrata Vaswani. “Regularized modified BPDN for noisy sparse reconstruction with partial erroneous

support and signal value knowledge”. In: IEEE Transactions on Signal Processing 60.1 (2011), pp. 182–196.
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Kalman Filter8

• Predict:

x̂t |t−1 = Ft x̂t−1, (7)
Pt |t−1 = FtPt−1F H

t + Qt , (8)

• Update:

K = Pt |t−1AH
t (AtPt |t−1AH

t + Rt)
−1, (9)

x̂t = x̂t |t−1 + K (yt − yt |t−1), yt |t−1 = At x̂t |t−1, (10)
Pt = (I − KAt)Pt |t−1, (11)

8Rudolph Emil Kalman. “A new approach to linear filtering and prediction problems”. In: (1960).
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Equivalent MAP estimate

• MMSE = MAP

x̂t = argmin
x
{∥yt − Atx∥2

R−1
t

+ ∥x − x̂t |t−1∥2
P−1

t|t−1
}, (12)

where the matrix weighted norm is defined as ∥z∥2
R = zHRz

Xiaozhi Liu, Yong Xia (BUAA) DCS October 13, 2023 9 / 30



Partial-Laplacian filtering sparsity model

• To capture the dynamic sparsity outside the support, we
propose the Partial-Laplacian filtering sparsity model
sparsity model

(xt)Tt−1 = (Ftxt−1)Tt−1 + (νt)Tt−1 ,

(xt)T c
t−1

= (Ftxt−1)T c
t−1

+ (νt)T c
t−1

,
(13)

where Tt denotes the the support set of xt . We assume that
(νt)Tt−1 ∼ CN (0,Q1

t ) and (νt)T c
t−1

have independent Laplacian but
non-identical distributions with inverse scale wi , i.e.
p((νt)i) =

wi
2 e−wi |(νt )i |, i ∈ T c

t−1.
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Equivalent MAP estimate

• Based on the dynamic model (13), the MAP estimate is

x̂t = argmin
x
{∥yt − Atx∥2

R−1
t

+ γ∥(x)T − (x̂t |t−1)T∥2
(Pt|t−1)

−1
1

+ ∥Wt((x)T c − (x̂t |t−1)T c )∥1},
(14)

where (Pt |t−1)1 = γ(Pt |t−1)T ,T and Wt = diag(wi1 ,wi2 , ...,wiN−L).
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Algorithmic framework

Algorithm Partial-Laplacian Dynamic CS (PLAY-CS)

Input: {y1, y2, ..., yT}, At ,∀t , σ2
m, σ2

m, α, a,b,Ft ,∀t ,Wt ,∀t
Initialize: Qt = σ2

mI,Rt = σ2
f I, ∀t , P0 = I, x̂0 = 0,T0 = ∅

for all t = 1,2, ...,T do
Prediction

x̂t |t−1 = Ft x̂t−1,

Pt |t−1 = FtPt−1F H
t + Qt ,

T = Tt−1.
Update

K = Pt |t−1AH
t (AtPt |t−1AH

t + Rt)
−1.

Estimate x̂t using (14).
Pt = (I − KAt)Pt |t−1.
Support estimation: Tt = {i : |(x̂t)i | > α}.

end for
Output: {x̂1, x̂2, ..., x̂T}
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Unified DCS algorithmic framework

Table: Summary of the connection between PLAY-CS and the existing DCS
algorithms

Algorithm Connections with PLAY-CS
KF-CS9 make (xt)T and (xt)T c independent

Modified-CS10 Wt = I, x̂t |t−1 = 0, γ = 0
RegModCS11 Wt = I, (x̂t |t−1)T c = 0

Weighted-ℓ1
12 x̂t |t−1 = 0,T = ∅

9Namrata Vaswani. “KF-CS: Compressive sensing on Kalman filtered residual”. In: arXiv preprint arXiv:0912.1628 (2009).
10Namrata Vaswani and Wei Lu. “Modified-CS: Modifying compressive sensing for problems with partially known

support”. In: IEEE Transactions on Signal Processing 58.9 (2010), pp. 4595–4607.
11Wei Lu and Namrata Vaswani. “Regularized modified BPDN for noisy sparse reconstruction with partial erroneous

support and signal value knowledge”. In: IEEE Transactions on Signal Processing 60.1 (2011), pp. 182–196.
12Adam S Charles and Christopher J Rozell. “Dynamic filtering of sparse signals using reweighted ℓ1”. In: 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 6451–6455.
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Connections with KF-CS

• KF-CS13

1 Running a reduced KF on (xt)T .
2 Estimating the additions on (xt)T c through the Dantzig selector.

Connections
KF-CS can be viewed as a special case of the PLAY-CS when (νt) can
be divided into two independent parts: (νt)T and (νt)T c and the Wt
is I.

13Namrata Vaswani. “KF-CS: Compressive sensing on Kalman filtered residual”. In: arXiv preprint arXiv:0912.1628 (2009).
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Connections with Modified-CS

• Modified-CS14

x̂t = argmin
x

∥yt − Atx∥2
2 + ∥(x)T c∥1. (15)

Connections
When γ = 0, x̂t |t−1 = 0 and Wt = I in (14), the Modified-CS can be
viewed as a special case of the PLAY-CS.

14Namrata Vaswani and Wei Lu. “Modified-CS: Modifying compressive sensing for problems with partially known
support”. In: IEEE Transactions on Signal Processing 58.9 (2010), pp. 4595–4607.
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Connections with RegModCS

• RegModCS15

x̂t = argmin
x

∥yt − Atx∥2
2 + γ∥(x)T − (x̂t |t−1)T∥2

2 + ∥(x)T c∥1, (16)

Connections
RegModCS can be derived based on the PLAY-CS when we set
Wt = I and (x̂t |t−1)T c = 0 in (14).

15Wei Lu and Namrata Vaswani. “Regularized modified BPDN for noisy sparse reconstruction with partial erroneous
support and signal value knowledge”. In: IEEE Transactions on Signal Processing 60.1 (2011), pp. 182–196.
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Connections with Weighted-ℓ1

• RWL1-DF16

x̂t = argmin
x

∥yt − Atx∥2
2 + ∥Wtx∥1, (17)

Connections
Weighted-ℓ1 can be considered a simplified variant of the PLAY-CS
when we set T = ∅ and x̂t |t−1 = 0.

16Adam S Charles and Christopher J Rozell. “Dynamic filtering of sparse signals using reweighted ℓ1”. In: 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE. 2013, pp. 6451–6455.
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Partial-LSM sparsity model
• Motivation: Optimal Wt is difficult to determine.
• To address the above issues, the Partial Laplacian scale

mixture (Partial-LSM) filtering sparsity model shown as Fig. 2
is proposed in this study.

E-Step

Predict

Update

Partial-LSM

Gauss LSM

Prior

M-Step
Innovation

Figure: The hierarchical structure of the Partial-LSM model
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Partial-LSM sparsity model

• In model (13), we futher model the inverse scale parameter wi
of (νt)i , i ∈ T c

t−1 as independent Gamma distributions

(xt)Tt−1 = (Ftxt−1)Tt−1 + (νt)Tt−1 ,

(xt)T c
t−1

= (Ftxt−1)T c
t−1

+ (νt)T c
t−1

,
(18)

where we assume
• (νt)Tt−1 ∼ CN (0,Q1

t ).

• p((νt)i) =
wi
2 e−wi |(νt )i |, i ∈ T c

t−1 and

p (wi) =
ba

Γ(a)
wa−1

i e−bwi , i ∈ T c
t−1. (19)
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Partial-LSM sparsity model

• Using Bayes’s rule, the MAP estimate is given by

x̂t =argmin
x
{− log p(x | yt)}

=argmin
x
{− log p(yt | x)− log p(x)}

=argmin
x
{− log p(yt | x)− log p((x)T )− log p((x)T c )}

(20)

• In general, we do not necessarily have an analytical expression
for the log p((x)T c ). The typical approach when dealing with
such a problem is the EM algorithm.
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EM algorithm

• Using Jensen’s inequality, we obtain the following upper bound

− log p(x | yt) ≤− log p(yt | x)− log p((x)T )

−
∫

w
q(w) log

p((x)T c ,w)

q(w)
dw := L(q, x)

(21)

• Based on EM algorithm, we can perform coordinate descent in
L(q, x)

E Step q(k+1) = argmin
q

L
(

q, x (k)
)

(22)

M Step x (k+1) = argmin
x

L
(

q(k+1), x
)

(23)
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EM algorithm

• Let ⟨.⟩q denote the expectation with respect to q(w). The M
Step (23) simplifies to

x̂t = argmin
x
{∥yt − Atx∥2

R−1
t

+ γ∥(x)T − (x̂t |t−1)T∥2
(Pt|t−1)

−1
1

+ ∥Wt((x)T c − (x̂t |t−1)T c )∥1},
(24)

where (Wt)
k = diag(⟨wi1⟩qk , ⟨wi2⟩qk , ..., ⟨wiN−L⟩qk ).

• We have tight equality in the (21) if q(w) = p(w | x), which
implies that the E step (22) reduces to

q(k+1)(w) = p(w | xk ). (25)
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EM algorithm

• Note that in the M step we only need to compute

⟨wi⟩p(w |xk ) =
a + 1

b + |(xk )i |
, (26)

which is based on the assumption of the Partial-LSM model.
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Algorithmic framework

Algorithm PLAY-CS with LSM (PLAY+-CS)

Input: {y1, y2, ..., yT}, At , ∀t , σ2
m, σ2

m, α, a, b,Ft , ∀t
Initialize: Qt = σ2

mI,Rt = σ2
f I, ∀t , P0 = I, x̂0 = 0,T0 = ∅

for all t = 1, 2, ...,T do
Prediction

x̂t|t−1 = Ft x̂t−1,

Pt|t−1 = FtPt−1F H
t + Qt ,

T = Tt−1.
Update

K = Pt|t−1AH
t (AtPt|t−1AH

t + Rt)
−1.

E-Step
Set diagonal matrix Wt using (26)

M-Step
Estimate x̂t using (14).

Pt = (I − KAt)Pt|t−1.
Support estimation: Tt = {i : |(x̂t)i | > α}.

end for
Output: {x̂1, x̂2, ..., x̂T}
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Experimental setup
• Datasets: CDL-B channel17

1 ULA, Nr = 32.
2 NL = 23, T = 200.

• Comparison Methods: Regular-CS18, KF-CS, Modified-CS,
RegModCS, Weighted-ℓ1

• Evaluation Measures:
• NMSE

NMSE :=
∥x̂t − xt∥2

∥xt∥2 , (27)

• Corr
Corr := x̂H

t xt

∥xt∥ |x̂t∥
, (28)

• TNMSE/TCorr

TNMSE :=
1
T

T∑
t=1

∥x̂t − xt∥2

∥xt∥2 , TCorr := 1
T

T∑
t=1

x̂H
t xt

∥xt∥ |x̂t∥
. (29)

17Study on Channel Model for Frequencies From 0.5 to 100 GHz. document TR 38.901. V 15.0.0. 3GPP, June 2018.
18Scott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic decomposition by basis pursuit”. In: SIAM

review 43.1 (2001), pp. 129–159.
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Performance Comparison
• The NMSE curves and Corr curves of different methods when

m = 24. (a), (c) TNMSE curves. (b), (d) TCorr curves.
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Performance Comparison
• The TNMSE and TCorr performance of various algorithms

under diffirent SNR and CR levels. (i), (j), (k) The TNMSE
performance. (l), (m), (n) The TCorr performance.

(e) PLAY+-CS (f) RWL1-DF (g) Regular-CS

(h) PLAY+-CS (i) RWL1-DF (j) Regular-CS
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Impact of SNR

Table: The TNMSE of different methods when m = 24

SNR=15 SNR=20 SNR=25 SNR=30 SNR=35 SNR=40
Modified-CS 0.5379 0.4562 0.4100 0.3937 0.4100 0.3877
RegModCS 0.8152 0.7954 0.8032 0.8250 0.7795 0.8255
Regular-CS 0.7977 0.7977 0.7724 0.8260 0.7870 0.7759
RWL1-DF 0.5414 0.4186 0.3678 0.3456 0.3536 0.3307
PLAY+-CS 0.4366 0.2432 0.1790 0.1438 0.1259 0.1150

Table: The TCorr of different methods when m = 24

SNR=15 SNR=20 SNR=25 SNR=30 SNR=35 SNR=40
Modified-CS 0.8426 0.8830 0.9019 0.9119 0.9080 0.9124
RegModCS 0.5816 0.5908 0.6048 0.5421 0.6046 0.5953
Regular-CS 0.5831 0.5953 0.6053 0.5432 0.6244 0.5621
RWL1-DF 0.8595 0.9093 0.9253 0.9358 0.9344 0.9419
PLAY+-CS 0.9098 0.9689 0.9823 0.9885 0.9914 0.9925
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Conclusions

• We propose the Partial-Laplacian filtering sparsity model to
model the structured dynamic sparsity of the realistic channel.

• We establish a unified DCS framework (PLAY-CS) that exhibits
versatility by encompassing various existing DCS algorithms.

• We develop a variant of the DCS algorithm, leveraging the
Partial-LSM filtering sparsity model we introduced. We call the
new DCS algorithm PLAY+-CS.

• We show the enhanced performance of the PLAY+-CS
algorithm compared to existing DCS algorithms through the
realistic channel tracking testing.
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