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Dynamic channel tracking

* A narrowband massive MIMO system with HBF structure

(a) HBF structure' (b) ULA structure?
e The observed precoded channel h; € CMr at time slot ¢

he = WeHp + ng, n ~ CN(0, 02 I, ), (1)

"Song Noh, Michael D Zoltowski, and David J Love. “Training sequence design for feedback assisted hybrid beamforming
in massive MIMO systems”. In: /EEE Transactions on Communications 64.1 (2015), pp. 187-200.

27ai Yang et al. “Sparse methods for direction-of-arrival estimation”. In: Academic Press Library in Signal Processing,
Volume 7. Elsevier, 2018, pp. 509-581.
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Dynamic channel tracking

¢ A half-wave spaced ULA at the receiver

N
Hr =Y aja(6)), (2)
i=1
where «; denoted the complex gain of the jth path and
a(elt) — \/Lﬁ[“ g/ sin 6! ei7r(Nr—1)sin Gf]T

e H; can be transformed into the sparse angle domain
H; = D, 3)

where D is the transform dictionary determined by the
geometrical structure of the antenna array.
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Temporal structured sparsity
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Figure: (a) Antenna-Time domain. (b) Angle-Time domain.

e we can rewrite (1) as

he = AtHy + ny, 4)
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® DCS Problem
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Dynamic Compressive sensing (DCS)

e The main goal of DCS problem is to recursively reconstruct {x;}
from {y;}(i.e., M < N)

Yt = Atxe + ng, ne ~ CN(0, Ry), (5)
e Focusing on the dynamic filtering model
Xt = fe(Xt—1) + vt (6)

where v; is the filtering noise (innovation).
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Existing DCS algorithms

e Recursive algorithms
© Exploiting the slow support changing feature
® LS-CS*, Modified-CS*, Weighted-¢4°.
@ Exploiting the slow support and value changing feature.
® KF-CS®, RegMod(CS’
® Question: Do these existing recursive DCS algorithms have some
intrinsic correlations or not?

3Namrata Vaswani. “LS-CS-residual (LS-CS): Compressive sensing on least squares residual”. In: /EEE Transactions on
Signal Processing 58.8 (2010), pp. 4108-4120.

4Namrata Vaswani and Wei Lu. “Modified-CS: Modifying compressive sensing for problems with partially known
support”. In: IEEE Transactions on Signal Processing 58.9 (2010), pp. 4595-4607.

5Adam S Charles and Christopher ) Rozell. “Dynamic filtering of sparse signals using reweighted ¢4". In: 20713 IEEE
International Conference on Acoustics, Speech and Signal Processing. |EEE. 2013, pp. 6451-6455.

®Namrata Vaswani. “KF-CS: Compressive sensing on Kalman filtered residual”. In: arXiv preprint arXiv:0912.1628 (2009).

7Wei Lu and Namrata Vaswani. “Regularized modified BPDN for noisy sparse reconstruction with partial erroneous
support and signal value knowledge”. In: /EEE Transactions on Signal Processing 60.1 (2011), pp. 182-196.
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© Partial-Laplacian filtering sparsity model
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Kalman Filter8

e Predict:
Xtji—1 = FiXi_1, (7)
Pyt = FiP1 F{ + Q, (8)

e Update:
K = P At (AP A + Re) ™, 9)
Xt = Xyjt—1 + KVt — Yiji—1)s Yijt—1 = AtXejt—1, (10)
Pt = (I — KAt)Pyi—1, (1)

8Rudolph Emil Kalman. “A new approach to linear filtering and prediction problems”. In: (1960).
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Equivalent MAP estimate

e MMSE = MAP

% = argmin{llye = Acxllfo + X = Ryesllp s 3 (12)

where the matrix weighted norm is defined as ||z||% = z"Rz
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Partial-Laplacian filtering sparsity model

e To capture the dynamic sparsity outside the support, we
propose the Partial-Laplacian filtering sparsity model

sparsity model

(x0)1,_y = (Fexe—1) 1, + ()75
(Xt)e , = (Fixe—1)71e , + (V)72

where T; denotes the the support set of x;. We assume that
(v))1,_, ~CN(0,Q}) and (vt)7e , have independent Laplacian but
non-identical distributions with inverse scale w;, i.e.

p((v);) = e Wl je TE |

(13)
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Equivalent MAP estimate

e Based on the dynamic model (13), the MAP estimate is

X = argmin{|ly; - Atx|y,2?t,1 + ()7 — (Kt )TH(ZP”H)ﬁ
+[IWH(X) 7e — (Xge—1) 7)1},

where (Py_1)1 = v(Pyt—1)7,7 and W; = diag(w;,, W, ..., Wj,_, ).

(14)
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Algorithmic framework

Algorithm Partial-Laplacian Dynamic CS (PLAY-CS)

Input: {yy,ys,...,y1}, A1, Vt, 02, 02, a, a,b,F;, Vt, W, Vit
Initialize: Q; = 0',2,,/, R: = O'?/,Vt, Py=1, )A(o =0,Tp = 0
forallt=1,2,..., T do

Prediction
Xyjt—1 = Fiki1,
P-4 = FiPi 1 Ff' + Q.
T="T;.
Update
K= Pt|t,1A;-I(AtPt|t,1A$_I + Rt)71 .
Estimate X; using (14).
Pt = (I — KAt)Pyje_1.
Support estimation: T; = {i : |(X)i| > a}.
end for
Output: {),\(1 R )A(g, ooy )A(T}
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@ Connections with existing DCS methods
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Unified DCS algorithmic framework

Table: Summary of the connection between PLAY-CS and the existing DCS
algorithms

Algorithm Connections with PLAY-CS
KF-CS?® make (x;)1 and (x¢)7c independent
Modified-CS™0 Wi =1,%:1=0,v=0
RegModCS” Wi =1, ()A(t|t_1)7'c =0
Weighted-¢4 12 X1 =0T =10

9Namrata Vaswani. “KF-CS: Compressive sensing on Kalman filtered residual”. In: arXiv preprint arXiv:0912.1628 (2009).

10Namrata Vaswani and Wei Lu. “Modified-CS: Modifying compressive sensing for problems with partially known
support”. In: IEEE Transactions on Signal Processing 58.9 (2010), pp. 4595-4607.

"Wei Lu and Namrata Vaswani. “Regularized modified BPDN for noisy sparse reconstruction with partial erroneous
support and signal value knowledge”. In: /EEE Transactions on Signal Processing 60.1 (2011), pp. 182-196.

2Adam S Charles and Christopher | Rozell. “Dynamic filtering of sparse signals using reweighted ¢4". In: 2073 IEEE
International Conference on Acoustics, Speech and Signal Processing. |EEE. 2013, pp. 6451-6455.
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Connections with KF-CS

e KF-CS™
@ Running a reduced KF on (x;) 7.
@® Estimating the additions on (x;) - through the Dantzig selector.

KF-CS can be viewed as a special case of the PLAY-CS when (v¢) can
be divided into two independent parts: (v¢)r and (v) - and the W;
is /.

3Namrata Vaswani. “KF-CS: Compressive sensing on Kalman filtered residual”. In: arXiv preprint arXiv:0912.1628 (2009).
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Connections with Modified-CS

e Modified-CS™

S = argmin [lye — Ax||3 + [|(x) e |1 (15)

When v = 0, X;_y = 0 and W; = /in (14), the Modified-CS can be
viewed as a special case of the PLAY-CS.

" Namrata Vaswani and Wei Lu. “Modified-CS: Modifying compressive sensing for problems with partially known
support”. In: IEEE Transactions on Signal Processing 58.9 (2010), pp. 4595-4607.
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Connections with RegModCS

e RegModcCS'"

¢ = argmin |yt — Ax|§ +11(0)7 = Gy 7B+ 1) 7ell, (16)

RegModCS can be derived based on the PLAY-CS when we set
Wt = /and ()A(t|t_1)7'c =0in (14).

"SWei Lu and Namrata Vaswani. “Regularized modified BPDN for noisy sparse reconstruction with partial erroneous
support and signal value knowledge”. In: /EEE Transactions on Signal Processing 60.1 (2011), pp. 182-196.
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Connections with Weighted-/4

e RWL1-DF'®

% = argmin||y; — Aex|[3 + || Wex]ls, (17)

Weighted-¢; can be considered a simplified variant of the PLAY-CS
when we set T = () and X;;_1 = 0.

'6Adam S Charles and Christopher | Rozell. “Dynamic filtering of sparse signals using reweighted ¢4". In: 2073 IEEE
International Conference on Acoustics, Speech and Signal Processing. |EEE. 2013, pp. 6451-6455.
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@ Partial-LSM filtering sparsity model
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Partial-LSM sparsity model

e Motivation: Optimal W, is difficult to determine.

® To address the above issues, the Partial Laplacian scale
mixture (Partial-LSM) filtering sparsity model shown as Fig. 2
is proposed in this study.

e — =

| oy Update
. E-Step
'
| Partial-LSM
: Tnnovation
Sty

Figure: The hierarchical structure of the Partial-LSM model
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Partial-LSM sparsity model

¢ In model (13), we futher model the inverse scale parameter w;
of (1), i € TF 4 as independent Gamma distributions

x)1_, = (Fexe—1)7,_, + ()14,
(18)
(X)1e, = (FeXe—1)7e , + ()70
where we assume
* (u)r,_, ~CN(0,Q}).
* p((vr)i) = %ewltil je T | and
p(w;) = b—aw?‘1e‘b""f ieTE (19)
I r(a) | ? t—1-
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Partial-LSM sparsity model

e Using Bayes's rule, the MAP estimate is given by
X = argmin{—log p(x | y1)}
=argmin{—log p(yt | x) — log p(x)} (20)
= argmin{—log p(yt | x) — log p((x)7) — log p((X)7¢)}

¢ In general, we do not necessarily have an analytical expression
for the log p((x) ). The typical approach when dealing with
such a problem is the EM algorithm.
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EM algorithm

e Using Jensen's inequality, we obtain the following upper bound

—logp(x | yt) < — log p(yt | x) —log p((x)7)
_/ q(w) Iogwdw = L(g,x) @

q(w)
e Based on EM algorithm, we can perform coordinate descent in
£(q, x)
E Step q(k'H) =argminL (q, X(k)> (22)
q
MStep x*+1) = argming (q(k+1),x) (23)
X
Xiaozhi Liu, Yong Xia (BUAA) DCS
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EM algorithm

* Let (.)q denote the expectation with respect to q(w). The M
Step (23) simplifies to

5 . 2 ~ 2
X = argmin{[lyt — Al -+ + ()7 = Kee-1)7llp, )

+ IWi((X) e = (Kge—1) me)ll1},

where (Wf)k = diag(<Wi1>qu <Wi2>qka e <WiN,L>qk)'

(24)
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EM algorithm

* Let (.)q denote the expectation with respect to q(w). The M
Step (23) simplifies to

5 . 2 ~ 2
X = argmin{[lyt — Al -+ + ()7 = Kee-1)7llp, )

) (24)
+ [We((X)7e — (Xgje—1) 7)1}
where (Wt)k = diag(<Wi1 >qk7 <Wi2>qka ) <WI'N,L>qk)'
e We have tight equality in the (21) if g(w) = p(w | x), which
implies that the E step (22) reduces to
q* D (w) = p(w | x5). (25)
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EM algorithm

¢ Note that in the M step we only need to compute

a+1

<Wi>p(w|xk) = ma (26)

which is based on the assumption of the Partial-LSM model.
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Algorithmic framework

Algorithm PLAY-CS with LSM (PLAY-CS)

Input: {y1,y2,...,yr}, A, Vi, 02, 02, a, a, b,F, vt
Initialize: Q: =02/, R =0?I,Vt,Py=1,%=0,To =0
forallt=1,2, ... Tdo

Prediction
Xtjt—1 = Fiki—1,
Pyi_1 = FP1Ff + Q,
T =T
Update
K = Py 1 Al (AP AT + Ry) ™.
E-Step
Set diagonal matrix W; using (26)
M-Step
Estimate X; using (14).
Pt = (I — KAt) Pyi—1.
Support estimation: T; = {i : |(%)i| > a}.
end for
Output: {%, %, ..., X7}

Xiaozhi Liu, Yong Xia (BUAA) DCS October 13, 2023 24/30



@® Simulation results
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Experimental setup

e Datasets: CDL-B channel'’
© ULA N, = 32.
® N, =23, T =200.
e Comparison Methods: Regular-CS'8, KF-CS, Modified-CS,
RegModCS, Weighted-¢1
¢ Evaluation Measures:

o NMSE
2
NMSE :— M, (27)
[ x¢]|2
e Corr .
Corr = L (28)
[t | |%el|

°* TNMSE/TCorr

T N
1 1% — xi||? X x¢
TNMSE := = —————, TCorr:= (29)
T ; [ X212 T Z (x| 1%l

7 Study on Channel Model for Frequencies From 0.5 to 100 GHz. document TR 38.901. V 15.0.0. 3GPP, June 2018,

85cott Shaobing Chen, David L Donoho, and Michael A Saunders. “Atomic decomposition by basis pursuit”. In: SIAM
review 43.1 (2001), pp. 129-159.
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Performance Comparison

e The NMSE curves and Corr curves of different methods when
m = 24. (a), (c) TNMSE curves. (b), (d) TCorr curves.

NMSE m=24 SNR=200

(a) SNR=20db (b) SNR=20db

NMSE m=24 SNR=40d | Corr m=24 SNR=40db

—=
_

c
=

o
0 2 4w w0 80 100 120 w40 10 180 200 0 2 4 e w0 100 12 10 160 180 200
ime siot Time siot

(c) SNR=40db (d) SNR=40db
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Performance Comparison

e The TNMSE and TCorr performance of various algorithms
under diffirent SNR and CR levels. (i), (j), (k) The TNMSE
performance. (I), (m), (n) The TCorr performance.

uuuuuuuuuuuu

LELEL

(e) PLAY'-CS (f) RWL1-DF (g) Regular-CS

ssssssssssss

L L A

(h) PLAY'-CS (i) RWL1-DF (j) Regular-CS
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Impact of SNR

Table: The TNMSE of different methods when m = 24

SNR=15 | SNR=20 | SNR=25 | SNR=30 | SNR=35 | SNR=40
Modified-CS | 0.5379 0.4562 0.4100 0.3937 0.4100 0.3877
RegModCS 0.8152 0.7954 0.8032 0.8250 0.7795 0.8255
Regular-CS 0.7977 0.7977 0.7724 0.8260 0.7870 0.7759

RWL1-DF 0.5414 0.4186 0.3678 0.3456 0.3536 0.3307
PLAY"-CS 0.4366 0.2432 0.1790 0.1438 0.1259 0.1150

Table: The TCorr of different methods when m = 24

SNR=15 | SNR=20 | SNR=25 | SNR=30 | SNR=35 | SNR=40
Modified-CS | 0.8426 0.8830 0.9019 0.9119 0.9080 0.9124
RegModCS 0.5816 0.5908 0.6048 0.5421 0.6046 0.5953
Regular-CS 0.5831 0.5953 0.6053 0.5432 0.6244 0.5621
RWL1-DF 0.8595 0.9093 0.9253 0.9358 0.9344 0.9419
PLAY'-CS 0.9098 0.9689 0.9823 0.9885 0.9914 0.9925
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@ Conclusions
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Conclusions

e We propose the Partial-Laplacian filtering sparsity model to
model the structured dynamic sparsity of the realistic channel.

e We establish a unified DCS framework (PLAY-CS) that exhibits
versatility by encompassing various existing DCS algorithms.

e We develop a variant of the DCS algorithm, leveraging the
Partial-LSM filtering sparsity model we introduced. We call the
new DCS algorithm PLAY*-CS.

e We show the enhanced performance of the PLAY"-CS

algorithm compared to existing DCS algorithms through the
realistic channel tracking testing.
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