Cubic NK-SVD: An Algorithm for Designing Parametric Dictionary in Frequency Estimation

Xiaozhi Liu Joint work with Prof. Yong Xia

School of Mathematical Sciences, Beihang University xzliu@buaa.edu.cn

> ORSC, Beijing September 15, 2024

1 Introduction

2 Cubic NK-SVD Algorithm

3 Convergence

- **4** Simulations
- **6** Concluding Remarks

Outline

1 Introduction

- 2 Cubic NK-SVD Algorithm
- 3 Convergence
- 4 Simulations
- **6** Concluding Remarks

- Source localization in MRI.
- DOA estimation in wireless communications.
- Frequency and amplitude estimation in spectrum analysis.
- Doppler estimation in radar systems.

• Consider the LSE problem

$$\boldsymbol{y}(t) = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t) + \boldsymbol{e}(t), \quad t = 1, \cdots, T, \tag{1}$$

where $\mathbf{y}(t) = [\mathbf{y}_{1}(t), \dots, \mathbf{y}_{N}(t)]^{T}, \boldsymbol{\theta} = [\theta_{1}, \dots, \theta_{K}]^{T},$ $\mathbf{s}(t) = [\mathbf{s}_{1}(t), \dots, \mathbf{s}_{K}(t)]^{T}, \ \mathbf{e}(t) = [\mathbf{e}_{1}(t), \dots, \mathbf{e}_{N}(t)]^{T}.$

• The matrix $\boldsymbol{A}(\boldsymbol{\theta}) = [\boldsymbol{a}(\theta_1), \cdots, \boldsymbol{a}(\theta_K)]^T$ is an array manifold matrix and $\boldsymbol{a}(\theta_k)$ is called steering vector of the *k*-th source.

$$\boldsymbol{a}(\theta) = \frac{1}{\sqrt{N}} \left[1, \boldsymbol{e}^{j\theta} \cdots, \boldsymbol{e}^{j(N-1)\theta} \right]^T, \qquad (2)$$

• The model (1) can be rewritten in a matrix form as

$$\boldsymbol{Y} = \boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{S} + \boldsymbol{E},\tag{3}$$

where $\mathbf{Y} = [\mathbf{y}(1), \dots, \mathbf{y}(T)]$ is the observation matrix consisting of *T* observed vectors, $\mathbf{S} = [\mathbf{s}(1), \dots, \mathbf{s}(T)]$, and **E** denotes the noise matrix.¹

The goal is to estimate the number of sources *K*, the unknown frequencies θ, and gains *S* given the observed data *Y* and the sensing matrix Φ.

¹The issue also arises in the context of CS reconstruction.

- Subspace methods: MUSIC², ESPRIT³.
 - Complete measurement;
 - A sufficient number of snapshots;
 - The model order is known;
 - Hign signal-to-noise ratio (SNR).
- On-grid methods: l₁-SVD⁴
 - Grid mismatch⁵.

6/29

²R. Schmidt. "Multiple Emitter Location and Signal Parameter Estimation". In: *IEEE Trans. Antennas Propag.* 34.3 (1986), pp. 276–280.

³R. Roy and T. Kailath. "ESPRIT–Estimation of Signal Parameters via Rotational Invariance Techniques". In: *IEEE Trans. Acoust., Speech, Signal Process.* 37.7 (1989), pp. 984–995.

⁴D. Malioutov, M. Cetin, and A. S. Willsky. "A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays". In: *IEEE Trans. Signal Process.* 53.8 (2005), pp. 3010–3022.

⁵Y. Chi et al. "Sensitivity to Basis Mismatch in Compressed Sensing". In: *IEEE Trans. Signal Process.* 59.5 (2011), pp. 2182–2195.

To combat the severity of the grid mismatch

- Off-grid methods: Sure-IR⁶ NOMP⁷, Bayesian methods⁸⁹¹⁰.
 - Lack convergence analysis.
- Gridless methods: ANM¹¹, EMaC¹².
 - Involving semidefinite programming (SDP), which can result in significant computational complexity.

⁸Z. Yang, L. Xie, and C. Zhang. "Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference". In: *IEEE Trans. Signal Process*. 61.1 (2012), pp. 38–43.

⁹T. L. Hansen et al. "A Sparse Bayesian Learning Algorithm with Dictionary Parameter Estimation". In: *Proc. IEEE Sensor* Array Multichannel Signal Process. Workshop (SAM). 2014, pp. 385–388.

Xiaozhi Liu, Yong Xia (BUAA)

⁶J. Fang et al. "Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach". In: *IEEE Trans. Signal Process.* 64.18 (2016), pp. 4649–4662.

⁷B. Mamandipoor, D. Ramasamy, and U. Madhow. "Newtonized Orthogonal Matching Pursuit: Frequency Estimation over the Continuum". In: *IEEE Trans. Signal Process.* 64.19 (2016), pp. 5066–5081.

¹⁰T. L. Hansen, B. H. Fleury, and B. D. Rao. "Superfast Line Spectral Estimation". In: *IEEE Trans. Signal Process.* 66.10 (2018), pp. 2511–2526.

¹¹G. Tang et al. "Compressed Sensing off the Grid". In: *IEEE Trans. Inf. Theory* 59.11 (2013), pp. 7465–7490.

¹²Y. Chen and Y. Chi, "Spectral Compressed Sensing via Structured Matrix Completion". In: *Proc. Int. Conf. Mach. Learn.* (*ICML*). 2013, pp. 414–422.

Outline

Introduction

2 Cubic NK-SVD Algorithm

3 Convergence

4 Simulations

6 Concluding Remarks

• The LSE problem can be formulated as a parametric DL problem

$$\min_{\tilde{\theta}, \boldsymbol{X}} \| \boldsymbol{Y} - \boldsymbol{D}(\tilde{\theta}) \boldsymbol{X} \|_{F}^{2}$$
s.t.
$$\| \boldsymbol{X}_{i} \|_{0} \leq K, \ \forall i = 1, \cdots, T.$$
(4)

where \boldsymbol{x}_i is the *i*-th column of the matrix \boldsymbol{X} .

• Inspired by classical K-SVD algorithm [12], we propose a parametric DL algorithm for LSE by incorporating cubic regularization into Newton refinements.

- Sparse coding stage:
 - **OMP**¹³, **FISTA**¹⁴.
- Atom update stage:
 - To minimize the following objective

$$S(\tilde{\theta}_{k}, \boldsymbol{x}_{T}^{k}) = \|\boldsymbol{Y} - \boldsymbol{D}(\tilde{\theta})\boldsymbol{X}\|_{F}^{2}$$

$$= \|\boldsymbol{Y} - \sum_{j=1}^{R} \boldsymbol{a}(\tilde{\theta}_{j})\boldsymbol{x}_{T}^{j}\|_{F}^{2}$$

$$= \|(\boldsymbol{Y} - \sum_{j \neq k} \boldsymbol{a}(\tilde{\theta}_{j})\boldsymbol{x}_{T}^{j}) - \boldsymbol{a}(\tilde{\theta}_{k})\boldsymbol{x}_{T}^{k}\|_{F}^{2}$$

$$= \|\boldsymbol{E}_{k} - \boldsymbol{a}(\tilde{\theta}_{k})\boldsymbol{x}_{T}^{k}\|_{F}^{2},$$
(5)

Xiaozhi Liu, Yong Xia (BUAA)

¹³J. A. Tropp and A. C. Gilbert. "Signal Recovery from Random Measurements via Orthogonal Matching Pursuit". In: IEEE Trans. Inf. Theory 53.12 (2007), pp. 4655–4666.

¹⁴A. Beck and M. Teboulle. "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems". In: SIAM J. Imaging Sci. 2.1 (2009), pp. 183–202.

Atom Update

- Directly optimizing $S(\tilde{\theta}_k, \boldsymbol{x}_T^k)$ over $\tilde{\theta}_k$ and \boldsymbol{x}_T^k is difficult.
 - 1 Coarse estimate stage.
 - **2** Cubic Newton refinement stage.
- Coarse estimate stage:
 - Use SVD to find the closest rank-1 matrix (in Frobenius norm) that approximates E_k .
 - Restrict it to a finite discrete set denoted by $\Omega = \{k(2\pi/\gamma N) : k = 0, 1, \cdots, (\gamma N 1)\}.$
 - The output $(\tilde{\theta}_k)_c$ of this stage is the solution to the following optimization problem

$$(\tilde{\theta}_k)_c = \arg\min_{\theta \in \Omega} |\boldsymbol{a}(\theta)^H \boldsymbol{u}_1|.$$
 (6)

• Given $\tilde{\theta}_k$ is fixed, the optimal coefficients that minimizes $S(\tilde{\theta}_k, \mathbf{x}_T^k)$ is given by

$$\hat{\boldsymbol{x}}_{R}^{k} = \boldsymbol{a}(\tilde{\theta}_{k})^{H} \boldsymbol{E}_{\boldsymbol{k}}^{\boldsymbol{R}}, \tag{7}$$

Atom Update

- Cubic Newton refinement stage:
 - Note that the partial Hessian of function *S* with respect to θ is Lipschitz continuous.
 - We can refine the frequency using cubic regularization of Newton's method¹⁵:

$$\hat{\theta}'_{k} \in \arg\min_{\theta} \xi^{L(\hat{\boldsymbol{x}}^{T}_{T})}_{\hat{\theta}_{k}, \hat{\boldsymbol{x}}^{k}_{T}}(\theta),$$
(8)

where the auxiliary function

$$\begin{aligned} \xi_{\hat{\theta}_{k},\hat{\mathbf{x}}_{T}^{k}}^{L(\hat{\mathbf{x}}_{T}^{k})}(\theta) &= \left\langle \nabla_{\theta} S\left(\hat{\theta}_{k},\hat{\mathbf{x}}_{T}^{k}\right), \theta - \theta_{k} \right\rangle \\ &+ \frac{1}{2} \left\langle \nabla_{\theta\theta}^{2} S\left(\hat{\theta}_{k},\hat{\mathbf{x}}_{T}^{k}\right) (\theta - \theta_{k}), \theta - \theta_{k} \right\rangle \\ &+ \frac{L(\hat{\mathbf{x}}_{T}^{k})}{6} |\theta - \theta_{k}|^{3}. \end{aligned}$$
(9)

¹⁵Y. Nesterov and B. T. Polyak. "Cubic Regularization of Newton Method and Its Global Performance". In: *Math. Program.* 108.1 (2006), pp. 177–205.

Proposed Algorithm

Algorithm Cubic Newtonized K-SVD (Cubic NK-SVD)

```
1: Input: Y, R, \gamma, \epsilon.
2: Initialize: \widehat{K} = R, f = \{k(2\pi/R) : k = 0, 1, \dots, R-1\} and \Omega = \{k(2\pi/\gamma N) : k = 0, 1, \dots, (\gamma N-1)\}.
 3: Output: Updated \hat{K}, f, and X.
4: repeat
5:
6:
7:
8:
9:
10:
             Sparse Coding Stage:
             X is updated using OMP with an error bound \epsilon.
             Atom Update Stage:
             for k = 1 to B do
                    Compute \mathcal{I}_k = \{\ell \mid \boldsymbol{x}_T^k(\ell) \neq 0\}.
                       if \mathcal{I}_k = \emptyset then
11:
                             Eliminate the unused atom \boldsymbol{a}(\tilde{\theta}_i).
12:
                             \widehat{K} = \widehat{K} - 1
13:
14:
                       else
                             Compute error \boldsymbol{E}_{\boldsymbol{k}} = \boldsymbol{Y} - \sum_{i \neq k} \boldsymbol{a}(\tilde{\theta}_i) \boldsymbol{x}_T^{J}.
15:
                             Retrict \boldsymbol{E}_{\boldsymbol{k}} by \boldsymbol{E}_{\boldsymbol{k}}^{\boldsymbol{R}} = (\boldsymbol{E}_{\boldsymbol{k}})_{\mathcal{I}_{\boldsymbol{k}}}.
16:
                             Compute first left singular vector \boldsymbol{u}_1 of \boldsymbol{E}_k^{\boldsymbol{R}}.
17:
                             Coarse Estimate: Update (\tilde{\theta}_k)_c within \Omega by (6) and its corresponding gain (\boldsymbol{x}_T^k)_c by (7).
18:
                             Cubic Newton Refinement: Refine (\hat{\theta}_k, \hat{\boldsymbol{x}}_T^k) using (8).
19:
                       end if
                 end for
           until stopping criterion met
```

Introduction

2 Cubic NK-SVD Algorithm

3 Convergence

4 Simulations

5 Concluding Remarks

Convergence

• Focus on the nonconvex minimization problem involving two blocks of variables, $(x, y) \in \mathbb{R}^1 \times \mathbb{C}^7$:

$$\min_{x,y} H(x, y). \tag{10}$$

Assumption

(i) Assume that the objective function $H(x, \mathbf{y})$ is bounded below, i.e., $\inf_{\mathbb{R}^1 \times \mathbb{C}^T} H \ge H^*$. (ii) For any fixed \mathbf{y} the function $x \to H(x, \mathbf{y})$ is $C_{L(\mathbf{y})'}^{2,2}$ namely the partial Hessian $\nabla_{xx}^2 H(x, \mathbf{y})$ is Lipschitz continuous with moduli $L(\mathbf{y})$, that is

$$\begin{split} \left\| \nabla_{xx}^2 H(x_1, \boldsymbol{y}) - \nabla_{xx}^2 H(x_2, \boldsymbol{y}) \right\| &\leq L(\boldsymbol{y}) \left\| x_1 - x_2 \right\|, \\ \forall x_1, x_2 \in \mathbb{R}^1. \end{split}$$

Assumption

(iii) For any fixed x the function $\mathbf{y} \to H(x, \mathbf{y})$ is assumed to be strongly convex (or, more specifically, ν -strongly convex) in \mathbb{C}^T . In other words, there exists $\nu > 0$ such that

$$(\nabla^2_{\boldsymbol{y}\boldsymbol{y}})_c H(\boldsymbol{x},\boldsymbol{y}) \succeq \frac{\nu}{2} \boldsymbol{I}_{2T} \succ \boldsymbol{0},$$

where we used the notation $(\nabla^2_{yy})_c H(y)$ to refer to the complex form of the partial Hessian matrix of H(x, y). (iv) There exists λ^-, λ^+ such that

$$\inf\left\{L\left(\boldsymbol{y}^{\boldsymbol{k}}\right):\boldsymbol{k}\in\mathbb{N}\right\}\geq\lambda^{-},\tag{11}$$

$$\sup\left\{L\left(\boldsymbol{y}^{\boldsymbol{k}}\right):\boldsymbol{k}\in\mathbb{N}\right\}\leq\lambda^{+}.$$
(12)

Convergence

• As outlined in Algorithm 1, we generate a sequence $\{(x^k, \mathbf{y}^k)\}_{k \in \mathbb{N}}$ via the scheme

$$x^{k+1} \in \arg\min_{x} \xi_{x^{k}, \mathbf{y}^{k}}^{\mathcal{L}(\mathbf{y}^{k})}(x), \tag{13}$$

$$\boldsymbol{y}^{k+1} \in \arg\min_{\boldsymbol{y}} H\left(\boldsymbol{x}^{k+1}, \boldsymbol{y}\right),$$
 (14)

where the auxiliary function

$$\xi_{x^{k},\mathbf{y}^{k}}^{L(\mathbf{y}^{k})}(x) = \left\langle \nabla_{x}H\left(x^{k},\mathbf{y}^{k}\right), x - x^{k} \right\rangle \\ + \frac{1}{2} \left\langle \nabla_{xx}^{2}H\left(x^{k},\mathbf{y}^{k}\right)(x - x^{k}), x - x^{k} \right\rangle$$

$$+ \frac{L(\mathbf{y}^{k})}{6} |x - x^{k}|^{3}.$$
(15)

Lemma ([15])

Let $h : \mathbb{R}^1 \to \mathbb{R}$ be a twice differentiable function with Hessian assumed L_h -Lipschitz continuous. Then,

$$|h'(x_2) - h'(x_1) - h''(x_1)(x_2 - x_1)| \le \frac{1}{2}L_h|x_2 - x_1|^2,$$
 (16)

$$\left| \begin{array}{l} h(x_2) - h(x_1) - \left\langle h'(x_1), x_2 - x_1 \right\rangle \\ -\frac{1}{2} \left\langle h''(x_1)(x_2 - x_1), x_2 - x_1 \right\rangle \right| \leq \frac{L_h}{6} |x_2 - x_1|^3.$$

$$(17)$$

Lemma ([15])

For any $x \in \mathbb{R}^1$ we have

$$\bar{h}_{L_h}(x) \le \min_{\tilde{x}} \left[h(\tilde{x}) + \frac{L_h}{3} |\tilde{x} - x|^3 \right],$$
(18)
$$h(x) - \bar{h}_{L_h}(x) \ge \frac{L_h}{12} |T_{L_h}(x) - x|^3.$$
(19)

Moreover, we have

$$h(T_{L_h}(x)) \leq \bar{h}_{L_h}(x). \tag{20}$$

Lemma ([15])

 $T_{L_h}(x)$ satisfies

$$|h'(T_{L_h}(x))| \le L_h |T_{L_h}(x) - x|^2.$$
 (21)

Lemma ([16])

Let $f : \mathbb{C}^T \to \mathbb{R}$ be a continuously differentiable function that is ν -strongly convex on \mathbb{C}^T with $\nabla f(\mathbf{y}^*) = 0$. Then,

$$f(\boldsymbol{y}) \geq f(\boldsymbol{y}^*) + \frac{\nu}{2} \|\boldsymbol{y} - \boldsymbol{y}^*\|^2, \quad \forall \boldsymbol{y} \in \mathbb{C}^T.$$
(22)

Lemma

Suppose that Assumption 1 hold. Let $\{\mathbf{z}^k\}_{k\in\mathbb{N}}$ be a sequence iteratively generated by (13) and (14). The following assertions hold. (i) The sequence $\{H(\mathbf{z}^k)\}_{k\in\mathbb{N}}$ is nonincreasing, and in particular, for any $k \ge 0$, we have

$$\frac{\lambda^{-}}{12} \left| \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \right|^{3} + \left\| \boldsymbol{y}^{k+1} - \boldsymbol{y}^{k} \right\|^{2} \le H\left(\boldsymbol{z}^{k} \right) - H\left(\boldsymbol{z}^{k+1} \right).$$
(23)

(ii) We have

$$\sum_{k=0}^{\infty} \left| \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \right|^{3} + \left\| \boldsymbol{y}^{k+1} - \boldsymbol{y}^{k} \right\|_{3}^{3} = \sum_{k=0}^{\infty} \left\| \boldsymbol{z}^{k+1} - \boldsymbol{z}^{k} \right\|_{3}^{3} < \infty, \quad (24)$$

and hence $\lim_{k\to\infty} \|\boldsymbol{z}^{k+1} - \boldsymbol{z}^k\| = 0$.

Lemma

Suppose that Assumptions 1 hold. Let $\{\mathbf{z}^k\}_{k\in\mathbb{N}}$ be a sequence generated by (13) and (14) which is assumed to be bounded, i.e., there exists σ such that $\|\mathbf{z}^k\| \leq \sigma, \forall k \in \mathbb{N}$. For each positive integer k, we have

$$\|\nabla_{x} H(x^{k+1}, y^{k+1})\| \le \lambda^{+} \|x^{k+1} - x^{k}\|^{2} + 2\sigma \|y^{k+1} - y^{k}\|,$$
(25)

and Wirtinger derivative

$$\|\nabla_{\boldsymbol{y}} H(\boldsymbol{x}^{k+1}, \boldsymbol{y}^{k+1})\| = \mathbf{0}.$$
 (26)

Then,

$$\|\nabla_{\boldsymbol{z}} H(\boldsymbol{z}^{k+1})\| \le \|\nabla_{\boldsymbol{x}} H(\boldsymbol{x}^{k+1}, \boldsymbol{y}^{k+1})\| + \|\nabla_{\boldsymbol{y}} H(\boldsymbol{x}^{k+1}, \boldsymbol{y}^{k+1})\| \le \rho_2 \|\boldsymbol{z}^{k+1} - \boldsymbol{z}^k\|,$$
(27)

where $\rho_2 = \max{\{\lambda^+, 2\sigma\}}$.

Xiaozhi Liu, Yong Xia (BUAA)

Properties of The Limit Point Set

• The set of all limit points is denoted by $\omega(\mathbf{z}^0)$, i.e.,

 $\omega(\boldsymbol{z}^{0}) = \{ \boldsymbol{\bar{z}} \in \mathbb{R}^{1} \times \mathbb{C}^{T} : \exists \text{ an increasing sequence of integers} \\ \{ k_{l} \}_{l \in \mathbb{N}}, \text{ sucn that } \boldsymbol{z}^{k_{l}} \to \boldsymbol{\bar{z}} \text{ as } l \to \infty \}.$

Theorem

Suppose that Assumption 1 hold. Let $\{\mathbf{z}^k\}_{k\in\mathbb{N}}$ be a sequence generated from the cubic NK-SVD algorithm which is assumed to be bounded. The following assertions hold. (i) $\emptyset \neq \omega(\mathbf{z}^0) \in \operatorname{crit} H := \{\mathbf{z} : \nabla_{\mathbf{z}} H(\mathbf{z}) = 0\}.$ (ii) We have $\lim_{k \to \infty} \operatorname{dist}(\mathbf{z}^k, \omega(\mathbf{z}^0)) = 0,$ (28)

where dist($\mathbf{z}^k, \omega(\mathbf{z}^0)$) denotes the distance from \mathbf{z}^k to $\omega(\mathbf{z}^0)$.

Introduction

2 Cubic NK-SVD Algorithm

3 Convergence

4 Simulations

6 Concluding Remarks

Experimental Setup

- We consider a mixture of K sinusoids of length N = 64.
- The true frequencies $\{\theta_k, k = 1, \dots, K\}$ are uniformly generated over $[0, 2\pi)$.
- The true coefficients in $\mathbf{s}(t)$ are generated i.i.d. with uniform random phase on $[0, 2\pi)$ and amplitudes drawn from a normal density of mean 10 and variance 3.
- Evaluation Measures:

$$RSNR = 20 \log_{10} \left(\frac{\|\boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t)\|_{2}}{\|\boldsymbol{A}(\boldsymbol{\theta})\boldsymbol{s}(t) - \boldsymbol{A}(\hat{\boldsymbol{\theta}})\hat{\boldsymbol{s}}(t)\|_{2}} \right), \quad (29)$$
$$\beta(\boldsymbol{\theta}, \hat{\boldsymbol{\theta}}) = \frac{1}{K} \sum_{k=1}^{K} (\min_{\hat{\boldsymbol{\theta}} \in \hat{\boldsymbol{\theta}}} d(\hat{\boldsymbol{\theta}}, \theta_{k}))^{2}. \quad (30)$$

Frequency Estimation for SMV Model

Figure: RSNRs of respective algorithms. (a) RSNRs vs. M, K = 7 and PSNR=10 dB. (b) RSNRs vs. K, M = 32 and PSNR=10 dB.

Frequency Estimation for SMV Model

Figure: (a) Success rates of respective algorithms vs. K, M = 32 and PSNR=10 dB. (b) Average running times (sec) of respective algorithms when M = 24 and PSNR=10 dB.

Frequency Recovery in Low SNR Scenerios

Figure: Frequency estimation using different algorithms when M = 24, K = 3 and PSNR=0 dB. (a) Ground truth. (b) Cubic NK-SVD. (c) NOMP. (d) ANM. (e) EMaC. (f) OMP.

Ability to Recover Closely-Spaced Frequencies

Figure: RSNRs of respective algorithms vs. μ , M = 32, K = 2 and PSNR=10 dB.

Frequency Estimation for MMV Model

Figure: (a) Angular spectra obtained using different algorithms when M = 64, K = 5 and PSNR=20 dB. (b) $\beta(\theta, \hat{\theta})$ of respective algorithms vs. PSNR, M = 64, T = 48, and K = 5.

Introduction

2 Cubic NK-SVD Algorithm

3 Convergence

4 Simulations

6 Concluding Remarks

- We propose a novel parametric DL algorithm for LSE, applicable in both SMV and MMV scenarios.
- We rigorously establish the convergence of the proposed algorithm within the BCD framework.
- Extensive simulations demonstrate that cubic NK- SVD outperforms existing SOTA methods in both SMV and MMV settings.

Thanks for Your Attention!

Email: xzliu@buaa.edu.cn https://arxiv.org/abs/2408.03708 https://github.com/xzliu-opt/Cubic-NK-SVD