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Applications

Source localization in MRI.

DOA estimation in wireless communications.
Frequency and amplitude estimation in spectrum analysis.
Doppler estimation in radar systems.
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Line Spectral Estimation (LSE)

e Consider the LSE problem
y(t) = A(0)s(t) +e(t), t=1,---,T, (1

where y(t) = [y1(t), -, yn(D]7, 0 = 01, -+ ,0k],
s(t) = [s1(t),--- . sk(D), e(t) = [ex (1), -~ . en()].

e The matrix A(8) = [a(61),--- ,a(0x)]" is an array manifold
matrix and a(fx) is called steering vector of the k-th source.

1

a(f) = 7N

[173/9... ein-1e] T 2)
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Line Spectral Estimation (LSE)

e The model (1) can be rewritten in a matrix form as
Y — A(6)S +E, (3)

where Y =[y(1),---,y(T)] is the observation matrix consisting
of T observed vectors, S =[s(1),---,s(T)], and E denotes the
noise matrix.'

¢ The goal is to estimate the number of sources K, the unknown
frequencies 6, and gains S given the observed data Y and the
sensing matrix &.

The issue also arises in the context of CS reconstruction.
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Existing Works

¢ Subspace methods: MUSIC?, ESPRIT3.
Complete measurement;
A sufficient number of snapshots;
The model order is known;
Hign signal-to-noise ratio (SNR).
e On-grid methods: ¢{-SVD*

* Grid mismatch®.
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Existing Works

To combat the severity of the grid mismatch
e Off-grid methods: Sure-IR® NOMP’, Bayesian methods&10.
® Lack convergence analysis.

e Gridless methods: ANM'", EMaC'2.

® |Involving semidefinite programming (SDP), which can result in
significant computational complexity.
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In: IEEE Trans. Signal Process. 64.18 (2016), pp. 4649-4662.
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over the Continuum?®. In: /EEE Trans. Signal Process. 64.19 (2016), pp. 5066-5081.
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Signal Process. 61.1 (2012), pp. 38-43.

9T. L. Hansen et al. “A Sparse Bayesian Learning Algorithm with Dictionary Parameter Estimation”. In: Proc. IEEE Sensor
Array Multichannel Signal Process. Workshop (SAM). 2014, pp. 385-388.

10T, L. Hansen, B. H. Fleury, and B. D. Rao. “Superfast Line Spectral Estimation”. In: /EEE Trans. Signal Process. 66.10 (2018),
pp. 2511-2526.

1G. Tang et al. “Compressed Sensing off the Grid". In: IEEE Trans. Inf. Theory 59.11 (2013), pp. 7465-7490.
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(ICML). 2013, pp. 414-422.
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Parametric Dictionary Learning

e The LSE problem can be formulated as a parametric DL
problem
min | ¥ — D(0)X||%
0.X (4)
st. |xillo <K, Vi=1,---, T,

where x; is the i-th column of the matrix X.

¢ Inspired by classical K-SVD algorithm [12], we propose a
parametric DL algorithm for LSE by incorporating cubic
regularization into Newton refinements.
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Algorithmic Framework

e Sparse coding stage:
* OMP'3, FISTA™,
e Atom update stage:
® To minimize the following objective

SO, x¥) =Y - D( 0)X |z
=[lY - 23(9 Tl
(Y - Z — a(fx) x|

J#k
=[|Ex — a(fx)xF|%.

13J. A. Tropp and A. C. Gilbert. “Signal Recovery from Random Measurements via Orthogonal Matching Pursuit”. In: /FEE
Trans. Inf. Theory 53.12 (2007), pp. 4655-4666.

14A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems”. In: SIAM J.
Imaging Sci. 2.1 (2009), pp. 183-202.
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Atom Update

e Directly optimizing S(f, x%) over 6, and x4 is difficult.
@ Coarse estimate stage.
@ Cubic Newton refinement stage.
¢ Coarse estimate stage:
e Use SVD to find the closest rank-1 matrix (in Frobenius norm)
that approximates E.
® Restrict it to a finite discrete set denoted by
Q={k(2r/yN): k=0,1,--- [ (yN = 1)}.
* The output (k). of this stage is the solution to the following
optimization problem

(0) = arg min|a(0)"u:|. (6)

* Given gy is fixed, the optimal coefficients that minimizes
S(0k, x&) is given by
ok 5 \HrR
Xp=a(b)"E;, (7)
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Atom Update

e Cubic Newton refinement stage:
* Note that the partial Hessian of function S with respect to 6 is
Lipschitz continuous.
* We can refine the frequency using cubic regularization of
Newton's method'>:

9k eargmlnf ;T( ), (8)
where the auxiliary function
&50(0) = (VoS (0. %5) .0 - 6c)
5 ok
+§<V§98<0k,x7>(0—0k),0—0k> )

L(X"
+ (GT) ‘9 _ 6k|3-

15y, Nesterov and B. T. Polyak. “Cubic Regularization of Newton Method and Its Global Performance”. In: Math. Program.
108.1 (2006), pp. 177-205.
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Proposed Algorithm

Algorithm Cubic Newtonized K-SVD (Cubic NK-SVD)

1: Input: Y, R, v, e.

2: Initialize: K = R, f = {k(2x/R) : k =0,1,--- ,R—1}and @ = {k(2n/yN) : k =0,1,--- , (YN — 1)}.
3: Output: Updated K, f, and X.

4: repeat

5: Sparse Coding Stage:

6: X is updated using OMP with an error bound e.

7. Atom Update Stage:

8: for k =1to Rdo

9: Compute Zy = {¢ | x‘}(@) # 0}.

10: if Z) = () then

11: Eliminate the unused atom a(éj).

12: K=K-1.

13: else L

14: Compute error E = Y — 57, a(Gj)x/T.

15: Retrict Ey by Eff = (Ey)z, -

16: Compute first left singular vector uq of Ef .

17: Coarse Estimate: Update ()¢ within Q by (6) and its corresponding gain (x'})c by (7).
18: Cubic Newton Refinement: Refine (9, )?’-;—) using (8).

19: end if

20: end for

271: until stopping criterion met
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Convergence

e Focus on the nonconvex minimization problem involving two
blocks of variables, (x,y) € R' x CT:

min H(x. y). (10

(i) Assume that the objective function H(x, y) is bounded below, i.e.,
infR1 <CT H 2 H*
(i) For any fixed y the function x — H(x, y) is Cf(f,), namely the partial

Hessian V2, H(x, y) is Lipschitz continuous with moduli L(y), that is

HV’Z(X (X1,y) — V)Z(XH(XQ,_V)H<L ) Ix1 — xel|,

Vxy, X% € R,
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Convergence

Assumption

(iii) For any fixed x the function y — H(x, y) is assumed to be strongly
convex (or, more specifically, v-strongly convex) in C'. In other words,
there exists v > 0 such that

X

(VE,)cH(x.y) = SloT = O,

where we used the notation (V2 )cH(y) to refer to the complex form
of the partial Hessian matrix of H( Y.
(iv) There exists \—, \* such that

inf{L(yk) ;keN}zA—, (11)

sup{L<yk) ;keN} <At (12)
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Convergence

e As outlined in Algorithm 1, we generate a sequence
{(x*, y¥)} ken via the scheme

. L(yX
M eargming, ¥ )(x), (13)

k+1 . k+1
y eargmymH(x ,y>, (14)

where the auxiliary function

4200 = (72 () )

1 /o2 Kk k K k

+ 5 (VRH (XK. yF) (= x)x=xF) - qas)
k

NETATR
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Basic Properties

Lemma ([15])

Let h: R" — R be a twice differentiable function with Hessian assumed
Lp-Lipschitz continuous. Then,

’
|H (x2) — B (x1) — W' (x1) (%2 — X1)| < §Lh|X2 — X2, (16)
‘h(Xg) h(X1) = <h/(X1 , Xo — X1>
1 Ly 17
—5 (") (e = x1), %0 = x1)| < —\Xz—X1 8. a7

v
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Basic Properties

Lemma ([15])

For any x € R" we have
- B Ly.. 3
hy,(x) < min [h(X) + —|X — x|7| , (18)
h(x) = b, (%) 2 3511, (x) = x| (19)
Moreover, we have B
h(T,(x)) < he,(x) (20)
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Basic Properties

T1,(x) satisfies

W (TL,(X))| < La| T, (x) — x|2. (21)

Let f: CT — R be a continuously differentiable function that is
v-strongly convex on CT with Vf(y*) = 0. Then,

fy) > f(y*) + —Hy y|3 vyecl (22)
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Convergence Properties

Suppose that Assumption 1 hold. Let {z¥}xcn be a sequence iteratively
generated by (13) and (14). The following assertions hold.

(i) The sequence {H(z*)}en is nonincreasing, and in particular, for
any k > 0, we have

R N RGO RGO
(i) We have

[e's) 3 3 i 3
S S SRR S
k=0 = ’

and hence limy_, ||2¥*" — z¥|| = 0.
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A Gradient Lower Bound

Suppose that Assumptions 1 hold. Let {z*}xcy be a sequence
generated by (13) and (14) which is assumed to be bounded, i.e., there
exists o such that || z¥|| < o,k € N. For each positive integer k, we have

IVXHOAE D < AT = xK|2 20y T —yK), (25)
and Wirtinger derivative
IVyHO Ty T = 0. (26)
Then,

IV2HEZ )| < [V HXH Ly )|+ IV HOE Ty )|

27
< pol| 2T — 27, &7

where p» = max{\", 2c}.
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Properties of The Limit Point Set

* The set of all limit points is denoted by w(2°), i.e.,

w(2%) = {z e R' x CT : Jan increasing sequence of integers

{Kki}en, sucn that z8 — z as | — oo}

Suppose that Assumption 1 hold. Let {z¥} . be a sequence generated

from the cubic NK-SVD algorithm which is assumed to be bounded. The
following assertions hold.

() # w(2°) € critH := {z : V,H(z) = 0}.
(ii) We have

lim dist(z,w(2%)) =0, (28)
k—oo

where dist(z¥,w(2°)) denotes the distance from z* to w(2°).
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@ Simulations
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Experimental Setup

e We consider a mixture of K sinusoids of length N = 64.

e The true frequencies {0,k =1,--- K} are uniformly
generated over [0, 27).

* The true coefficients in s(t) are generated i.i.d. with uniform
random phase on [0, 27) and amplitudes drawn from a normal
density of mean 10 and variance 3.

e Evaluation Measures:

RSNR = 20 logq ( ”A(G)S(OUQ ) : (29)
HA(O)s(t) — A(@)é(f)”2

K
3(0,6) = 1 > (mind(8,64))?. (30)
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Frequency Estimation for SMV Model
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Figure: RSNRs of respective algorithms. (a) RSNRs vs. M, K = 7 and
PSNR=10 dB. (b) RSNRs vs. K, M = 32 and PSNR=10 dB.
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Frequency Estimation for SMV Model
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Figure: (a) Success rates of respective algorithms vs. K, M = 32 and
PSNR=10 dB. (b) Average running times (sec) of respective algorithms
when M = 24 and PSNR=10 dB.
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Frequency Recovery in Low SNR Scenerios

(a) (b) (@
(d) (e) 0]

Figure: Frequency estimation using different algorithms when M = 24,
K = 3 and PSNR=0 dB. (a) Ground truth. (b) Cubic NK-SVD. (c) NOMP. (d)
ANM. (e) EMaC. (f) OMP.
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Ability to Recover Closely-Spaced Frequencies
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Figure: RSNRs of respective algorithms vs. y, M = 32, K = 2 and PSNR=10
dB.
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Frequency Estimation for MMV Model
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Figure: (a) Angular spectra obtained using different algorithms when
M =64, K =5 and PSNR=20 dB. (b) 5(0, 8) of respective algorithms vs.
PSNR, M =64, T =48,and K = 5.
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© Concluding Remarks
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Concluding Remarks

e We propose a novel parametric DL algorithm for LSE,
applicable in both SMV and MMV scenarios.

e We rigorously establish the convergence of the proposed
algorithm within the BCD framework.

e Extensive simulations demonstrate that cubic NK- SVD
outperforms existing SOTA methods in both SMV and MMV
settings.
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